Dyck paths and restricted permutations
نویسندگان
چکیده
This paper is devoted to characterize permutations with forbidden patterns by using canonical reduced decompositions, which leads to bijections between Dyck paths and Sn(321) and Sn(231), respectively. We also discuss permutations in Sn avoiding two patterns, one of length 3 and the other of length k. These permutations produce a kind of discrete continuity between the Motzkin and the Catalan numbers. © 2006 Elsevier B.V. All rights reserved. MSC: Primary, 05A05; 05A15; secondary 30B70;42C05
منابع مشابه
A Simple and Unusual Bijection for Dyck Paths and Its Consequences Sergi Elizalde and Emeric Deutsch
In this paper we introduce a new bijection from the set of Dyck paths to itself. This bijection has the property that it maps statistics that appeared recently in the study of pattern-avoiding permutations into classical statistics on Dyck paths, whose distribution is easy to obtain. We also present a generalization of the bijection, as well as several applications of it to enumeration problems...
متن کاملRestricted Dumont permutations, Dyck paths, and noncrossing partitions
We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...
متن کاملStatistics on Pattern-avoiding Permutations
This thesis concerns the enumeration of pattern-avoiding permutations with respect to certain statistics. Our first result is that the joint distribution of the pair of statistics ‘number of fixed points’ and ‘number of excedances’ is the same in 321-avoiding as in 132-avoiding permutations. This generalizes a recent result of Robertson, Saracino and Zeilberger, for which we also give another, ...
متن کاملPermutations with Restricted Patterns and Dyck Paths
We exhibit a bijection between 132-avoiding permutations and Dyck paths. Using this bijection, it is shown that all the recently discovered results on generating functions for 132-avoiding permutations with a given number of occurrences of the pattern 12 . . . k follow directly from old results on the enumeration of Motzkin paths, among which is a continued fraction result due to Flajolet. As a...
متن کاملAvoiding patterns in irreducible permutations
We explore the classical pattern avoidance question in the case of irreducible permutations, i.e., those in which there is no index i such that σ(i + 1) − σ(i) = 1. The problem is addressed completely in the case of avoiding one or two patterns of length three, and several well known sequences are encountered in the process, such as Catalan, Motzkin, Fibonacci, Tribonacci, Padovan and Binary nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 154 شماره
صفحات -
تاریخ انتشار 2006